Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 1343, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38351082

RESUMO

The bacterial cell-wall peptidoglycan is made of glycan strands crosslinked by short peptide stems. Crosslinks are catalyzed by DD-transpeptidases (4,3-crosslinks) and LD-transpeptidases (3,3-crosslinks). However, recent research on non-model species has revealed novel crosslink types, suggesting the existence of uncharacterized enzymes. Here, we identify an LD-transpeptidase, LDTGo, that generates 1,3-crosslinks in the acetic-acid bacterium Gluconobacter oxydans. LDTGo-like proteins are found in Alpha- and Betaproteobacteria lacking LD3,3-transpeptidases. In contrast with the strict specificity of typical LD- and DD-transpeptidases, LDTGo can use non-terminal amino acid moieties for crosslinking. A high-resolution crystal structure of LDTGo reveals unique features when compared to LD3,3-transpeptidases, including a proline-rich region that appears to limit substrate access, and a cavity accommodating both glycan chain and peptide stem from donor muropeptides. Finally, we show that DD-crosslink turnover is involved in supplying the necessary substrate for LD1,3-transpeptidation. This phenomenon underscores the interplay between distinct crosslinking mechanisms in maintaining cell wall integrity in G. oxydans.


Assuntos
Peptidil Transferases , Peptidil Transferases/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Bactérias , Peptídeos/química , Polissacarídeos , Peptidoglicano/química
2.
Elife ; 122023 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-37860966

RESUMO

Type 4 Secretion Systems are a main driver for the spread of antibiotic resistance genes and virulence factors in bacteria. In Gram-positives, these secretion systems often rely on surface adhesins to enhance cellular aggregation and mating-pair formation. One of the best studied adhesins is PrgB from the conjugative plasmid pCF10 of Enterococcus faecalis, which has been shown to play major roles in conjugation, biofilm formation, and importantly also in bacterial virulence. Since prgB orthologs exist on a large number of conjugative plasmids in various different species, this makes PrgB a model protein for this widespread virulence factor. After characterizing the polymer adhesin domain of PrgB previously, we here report the structure for almost the entire remainder of PrgB, which reveals that PrgB contains four immunoglobulin (Ig)-like domains. Based on this new insight, we re-evaluate previously studied variants and present new in vivo data where specific domains or conserved residues have been removed. For the first time, we can show a decoupling of cellular aggregation from biofilm formation and conjugation in prgB mutant phenotypes. Based on the presented data, we propose a new functional model to explain how PrgB mediates its different functions. We hypothesize that the Ig-like domains act as a rigid stalk that presents the polymer adhesin domain at the right distance from the cell wall.


Assuntos
Adesinas Bacterianas , Proteínas de Bactérias , Virulência/genética , Plasmídeos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Adesinas Bacterianas/genética , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Biofilmes , Polímeros
3.
Nat Microbiol ; 8(8): 1549-1560, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37365341

RESUMO

To explore favourable niches while avoiding threats, many bacteria use a chemotaxis navigation system. Despite decades of studies on chemotaxis, most signals and sensory proteins are still unknown. Many bacterial species release D-amino acids to the environment; however, their function remains largely unrecognized. Here we reveal that D-arginine and D-lysine are chemotactic repellent signals for the cholera pathogen Vibrio cholerae. These D-amino acids are sensed by a single chemoreceptor MCPDRK co-transcribed with the racemase enzyme that synthesizes them under the control of the stress-response sigma factor RpoS. Structural characterization of this chemoreceptor bound to either D-arginine or D-lysine allowed us to pinpoint the residues defining its specificity. Interestingly, the specificity for these D-amino acids appears to be restricted to those MCPDRK orthologues transcriptionally linked to the racemase. Our results suggest that D-amino acids can shape the biodiversity and structure of complex microbial communities under adverse conditions.


Assuntos
Vibrio cholerae , Vibrio cholerae/metabolismo , Aminoácidos/metabolismo , Lisina/metabolismo , Proteínas de Bactérias/metabolismo , Bactérias/metabolismo , Arginina/metabolismo
5.
Life Sci Alliance ; 6(4)2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36669792

RESUMO

Type 4 secretion systems are large and versatile protein machineries that facilitate the spread of antibiotic resistance and other virulence factors via horizontal gene transfer. Conjugative type 4 secretion systems depend on relaxases to process the DNA in preparation for transport. TraI from the well-studied conjugative plasmid pKM101 is one such relaxase. Here, we report the crystal structure of the trans-esterase domain of TraI in complex with its substrate oriT DNA, highlighting the conserved DNA-binding mechanism of conjugative relaxases. In addition, we present an apo structure of the trans-esterase domain of TraI that includes most of the flexible thumb region. This allows us for the first time to visualize the large conformational change of the thumb subdomain upon DNA binding. We also characterize the DNA binding, nicking, and religation activity of the trans-esterase domain, helicase domain, and full-length TraI. Unlike previous indications in the literature, our results reveal that the TraI trans-esterase domain from pKM101 behaves in a conserved manner with its homologs from the R388 and F plasmids.


Assuntos
Proteínas de Escherichia coli , Proteínas de Escherichia coli/metabolismo , Sistemas de Secreção Tipo IV , Plasmídeos/genética , DNA , Esterases/genética
6.
Structure ; 30(6): 876-885.e5, 2022 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-35429437

RESUMO

Multidrug-resistant bacteria pose serious problems in hospital-acquired infections (HAIs). Most antibiotic resistance genes are acquired via conjugative gene transfer, mediated by type 4 secretion systems (T4SS). Although most multidrug-resistant bacteria responsible for HAIs are of Gram-positive origin, with enterococci being major contributors, mostly Gram-negative T4SSs have been characterized. Here, we describe the structure and organization of PrgL, a core protein of the T4SS channel, encoded by the pCF10 plasmid from Enterococcus faecalis. The structure of PrgL displays similarity to VirB8 proteins of Gram-negative T4SSs. In vitro experiments show that the soluble domain alone is enough to drive both dimerization and dodecamerization, with a dimerization interface that differs from all other known VirB8-like proteins. In vivo experiments verify the importance of PrgL dimerization. Our findings provide insight into the molecular building blocks of Gram-positive T4SS, highlighting similarities but also unique features in PrgL compared to other VirB8-like proteins.


Assuntos
Proteínas de Bactérias , Sistemas de Secreção Tipo IV , Proteínas de Bactérias/química , Dimerização , Plasmídeos , Conformação Proteica , Sistemas de Secreção Tipo IV/química
7.
mSphere ; 6(3): e0026421, 2021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-34106752

RESUMO

Efficient horizontal gene transfer of the conjugative plasmid pCF10 from Enterococcus faecalis depends on the expression of its type 4 secretion system (T4SS) genes, controlled by the PQ promoter. Transcription from the PQ promoter is tightly regulated, partially to limit cell toxicity caused by overproduction of PrgB, a T4SS adhesin. PrgU plays an important role in regulating this toxicity by decreasing PrgB levels. PrgU has an RNA-binding fold, prompting us to test whether PrgU exerts its regulatory control through binding of prgQ transcripts. We used a combination of in vivo methods to quantify PrgU effects on prgQ transcripts at both single-cell and population levels. PrgU function requires a specific RNA sequence within an intergenic region (IGR) about 400 bp downstream of PQ. PrgU interaction with the IGR reduces levels of downstream transcripts. Single-cell expression analysis showed that cells expressing prgU decreased transcript levels more rapidly than isogenic prgU-minus cells. PrgU bound RNA in vitro without sequence specificity, suggesting that PrgU requires a specific RNA structure or one or more host factors for selective binding in vivo. PrgU binding to its IGR target might recruit RNase(s) for targeted degradation of downstream transcripts or reduce elongation of nascent transcripts beyond the IGR. IMPORTANCE Bacteria utilize type 4 secretion systems (T4SS) to efficiently transfer DNA between donor and recipient cells, thereby spreading genes encoding antibiotic resistance as well as various virulence factors. Regulation of expression of the T4SS proteins and surface adhesins in Gram-positive bacteria is crucial, as some of these are highly toxic to the cell. The significance of our research lies in identifying the novel mechanism by which PrgU performs its delicate fine-tuning of the expression levels. As prgU orthologs are present in various conjugative plasmids and transposons, our results are likely relevant to understanding of diverse clinically important transfer systems.


Assuntos
Proteínas de Bactérias/genética , Enterococcus faecalis/genética , Regulação Bacteriana da Expressão Gênica , Feromônios/metabolismo , Plasmídeos/genética , DNA Bacteriano/genética , Óperon , Feromônios/genética , Sistemas de Secreção Tipo IV/genética , Sistemas de Secreção Tipo IV/metabolismo
8.
Mol Microbiol ; 116(2): 459-469, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33817866

RESUMO

Enterococcal pheromone-inducible plasmids encode a predicted OppA-family secreted lipoprotein. In the case of plasmid pCF10, the protein is PrgZ, which enhances the mating response to cCF10 pheromone. OppA proteins generally function with associated OppBCDF ABC transporters to import peptides. In this study, we analyzed the potential interactions of PrgZ with two host-encoded Opp transporters using two pheromone-inducible fluorescent reporter constructs. Based on our results, we propose renaming these loci opp1 (OG1RF_10634-10639) and opp2 (OG1RF_12366-12370). We also examined the ability of the Opp1 and Opp2 systems to mediate import in the absence of PrgZ. Cells expressing PrgZ were able to import pheromone if either opp1 or opp2 was functional, but not if both opp loci were disrupted. In the absence of PrgZ, pheromone import was dependent on a functional opp2 system, including opp2A. Comparative structural analysis of the peptide-binding pockets of PrgZ, Opp1A, Opp2A, and the related Lactococcus lactis OppA protein, suggested that the robust pheromone-binding ability of PrgZ relates to a nearly optimal fit of the hydrophobic peptide, whereas binding ability of Opp2A likely results from a more open, promiscuous peptide-binding pocket similar to L. lactis OppA.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Transporte/metabolismo , Enterococcus faecalis/metabolismo , Lipoproteínas/metabolismo , Atrativos Sexuais/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Sítios de Ligação , Proteínas de Transporte/genética , Enterococcus faecalis/genética , Enterococcus faecalis/crescimento & desenvolvimento , Genoma Bacteriano/genética , Lipoproteínas/genética , Família Multigênica/genética , Plasmídeos/genética , Ligação Proteica/genética , Transporte Proteico/genética , Transporte Proteico/fisiologia
9.
Front Microbiol ; 11: 599899, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33324381

RESUMO

Surface proteins in Gram-positive bacteria are often involved in biofilm formation, host-cell interactions, and surface attachment. Here we review a protein module found in surface proteins that are often encoded on various mobile genetic elements like conjugative plasmids. This module binds to different types of polymers like DNA, lipoteichoic acid and glucans, and is here termed polymer adhesin domain. We analyze all proteins that contain a polymer adhesin domain and classify the proteins into distinct classes based on phylogenetic and protein domain analysis. Protein function and ligand binding show class specificity, information that will be useful in determining the function of the large number of so far uncharacterized proteins containing a polymer adhesin domain.

10.
J Mol Biol ; 432(20): 5681-5695, 2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32860774

RESUMO

Horizontal gene transfer between Gram-positive bacteria leads to a rapid spread of virulence factors and antibiotic resistance. This transfer is often facilitated via type 4 secretion systems (T4SS), which frequently are encoded on conjugative plasmids. However, donor cells that already contain a particular conjugative plasmid resist acquisition of a second copy of said plasmid. They utilize different mechanisms, including surface exclusion for this purpose. Enterococcus faecalis PrgA, encoded by the conjugative plasmid pCF10, is a surface protein that has been implicated to play a role in both virulence and surface exclusion, but the mechanism by which this is achieved has not been fully explained. Here, we report the structure of full-length PrgA, which shows that PrgA protrudes far out from the cell wall (approximately 40 nm), where it presents a protease domain. In vivo experiments show that PrgA provides a physical barrier to cellular adhesion, thereby reducing cellular aggregation. This function of PrgA contributes to surface exclusion, reducing the uptake of its cognate plasmid by approximately one order of magnitude. Using variants of PrgA with mutations in the catalytic site we show that the surface exclusion effect is dependent on the activity of the protease domain of PrgA. In silico analysis suggests that PrgA can interact with another enterococcal adhesin, PrgB, and that these two proteins have co-evolved. PrgB is a strong virulence factor, and PrgA is involved in post-translational processing of PrgB. Finally, competition mating experiments show that PrgA provides a significant fitness advantage to plasmid-carrying cells.


Assuntos
Proteínas de Bactérias/metabolismo , Enterococcus/metabolismo , Fatores de Virulência/metabolismo , Adesinas Bacterianas/metabolismo , Proteínas de Bactérias/química , DNA Bacteriano/metabolismo , Enterococcus/genética , Enterococcus faecalis/genética , Enterococcus faecalis/metabolismo , Regulação Bacteriana da Expressão Gênica , Transferência Genética Horizontal , Proteínas de Membrana/metabolismo , Plasmídeos , Sistemas de Secreção Tipo IV , Virulência
11.
Front Microbiol ; 10: 958, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31134011

RESUMO

The conjugative plasmid pCF10 from Enterococcus faecalis encodes a Type 4 Secretion System required for plasmid transfer. The accessory factor PcfF and relaxase PcfG initiate pCF10 transfer by forming the catalytically active relaxosome at the plasmid's origin-of-transfer (oriT) sequence. Here, we report the crystal structure of the homo-dimeric PcfF, composed of an N-terminal DNA binding Ribbon-Helix-Helix (RHH) domain and a C-terminal stalk domain. We identified key residues in the RHH domain that are responsible for binding pCF10's oriT sequence in vitro, and further showed that PcfF bends the DNA upon oriT binding. By mutational analysis and pull-down experiments, we identified residues in the stalk domain that contribute to interaction with PcfG. PcfF variant proteins defective in oriT or PcfG binding attenuated plasmid transfer in vivo, but also suggested that intrinsic or extrinsic factors might modulate relaxosome assembly. We propose that PcfF initiates relaxosome assembly by binding oriT and inducing DNA bending, which serves to recruit PcfG as well as extrinsic factors necessary for optimal plasmid processing and engagement with the pCF10 transfer machine.

12.
Mol Microbiol ; 109(3): 291-305, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29723434

RESUMO

Gram-positive bacteria deploy type IV secretion systems (T4SSs) to facilitate horizontal gene transfer. The T4SSs of Gram-positive bacteria rely on surface adhesins as opposed to conjugative pili to facilitate mating. Enterococcus faecalis PrgB is a surface adhesin that promotes mating pair formation and robust biofilm development in an extracellular DNA (eDNA) dependent manner. Here, we report the structure of the adhesin domain of PrgB. The adhesin domain binds and compacts DNA in vitro. In vivo PrgB deleted of its adhesin domain does not support cellular aggregation, biofilm development and conjugative DNA transfer. PrgB also binds lipoteichoic acid (LTA), which competes with DNA binding. We propose that PrgB binding and compaction of eDNA facilitates cell aggregation and plays an important role in establishment of early biofilms in mono- or polyspecies settings. Within these biofilms, PrgB mediates formation and stabilization of direct cell-cell contacts through alternative binding of cell-bound LTA, which in turn promotes establishment of productive mating junctions and efficient intra- or inter-species T4SS-mediated gene transfer.


Assuntos
Junções Aderentes/fisiologia , Adesinas Bacterianas/química , Adesinas Bacterianas/metabolismo , Biofilmes/crescimento & desenvolvimento , Conjugação Genética , Enterococcus faecalis/fisiologia , Adesinas Bacterianas/genética , Linhagem Celular , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Enterococcus faecalis/genética , Transferência Genética Horizontal , Lipopolissacarídeos/química , Lipopolissacarídeos/metabolismo , Plasmídeos/química , Plasmídeos/genética , Plasmídeos/metabolismo , Ligação Proteica , Conformação Proteica , Ácidos Teicoicos/química , Ácidos Teicoicos/metabolismo , Sistemas de Secreção Tipo IV
13.
J Mol Biol ; 430(3): 348-362, 2018 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-29183787

RESUMO

Proteolysis plays an important role in mitochondrial biogenesis, from the processing of newly imported precursor proteins to the degradation of mitochondrial targeting peptides. Disruption of peptide degradation activity in yeast, plant and mammalian mitochondria is known to have deleterious consequences for organism physiology, highlighting the important role of mitochondrial peptidases. In the present work, we show that the human mitochondrial peptidase neurolysin (hNLN) can degrade mitochondrial presequence peptides as well as other fragments up to 19 amino acids long. The crystal structure of hNLNE475Q in complex with the products of neurotensin cleavage at 2.7Å revealed a closed conformation with an internal cavity that restricts substrate length and highlighted the mechanism of enzyme opening/closing that is necessary for substrate binding and catalytic activity. Analysis of peptide degradation in vitro showed that hNLN cooperates with presequence protease (PreP or PITRM1) in the degradation of long targeting peptides and amyloid-ß peptide, Aß1-40, associated with Alzheimer disease, particularly cleaving the hydrophobic fragment Aß35-40. These findings suggest that a network of proteases may be required for complete degradation of peptides localized in mitochondria.


Assuntos
Metaloendopeptidases/metabolismo , Mitocôndrias/metabolismo , Peptídeos/metabolismo , Sequência de Aminoácidos , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/metabolismo , Animais , Cristalografia por Raios X , Células HeLa , Humanos , Metaloendopeptidases/química , Camundongos Endogâmicos C57BL , Modelos Moleculares , Neurotensina/química , Neurotensina/metabolismo , Peptídeos/química , Ligação Proteica , Conformação Proteica , Proteólise , Especificidade por Substrato
14.
Nat Commun ; 8(1): 1541, 2017 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-29142246

RESUMO

The NUDIX enzymes are involved in cellular metabolism and homeostasis, as well as mRNA processing. Although highly conserved throughout all organisms, their biological roles and biochemical redundancies remain largely unclear. To address this, we globally resolve their individual properties and inter-relationships. We purify 18 of the human NUDIX proteins and screen 52 substrates, providing a substrate redundancy map. Using crystal structures, we generate sequence alignment analyses revealing four major structural classes. To a certain extent, their substrate preference redundancies correlate with structural classes, thus linking structure and activity relationships. To elucidate interdependence among the NUDIX hydrolases, we pairwise deplete them generating an epistatic interaction map, evaluate cell cycle perturbations upon knockdown in normal and cancer cells, and analyse their protein and mRNA expression in normal and cancer tissues. Using a novel FUSION algorithm, we integrate all data creating a comprehensive NUDIX enzyme profile map, which will prove fundamental to understanding their biological functionality.


Assuntos
Perfilação da Expressão Gênica/métodos , Redes Reguladoras de Genes , Família Multigênica , Pirofosfatases/genética , Células A549 , Linhagem Celular , Linhagem Celular Tumoral , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Células MCF-7 , Filogenia , Pirofosfatases/classificação , Pirofosfatases/metabolismo , Interferência de RNA , Especificidade por Substrato
15.
Nat Commun ; 8(1): 1637, 2017 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-29158482

RESUMO

Botulinum neurotoxins (BoNTs), the most potent toxins known, are potential bioterrorism agents. It is well established that all seven serotypes of BoNTs (BoNT/A-G) require complex gangliosides as co-receptors. Here, we report that BoNT/DC, a presumed mosaic toxin between BoNT/D and BoNT/C1, binds and enters efficiently into neurons lacking complex gangliosides and shows no reduction in toxicity in mice deficient in complex gangliosides. The co-crystal structure of BoNT/DC with sialyl-Thomsen-Friedenreich antigen (Sialyl-T) suggests that BoNT/DC recognizes only the sialic acid, but not other moieties in gangliosides. Using liposome flotation assays, we demonstrate that an extended loop in BoNT/DC directly interacts with lipid membranes, and the co-occurring sialic acid binding and loop-membrane interactions mediate the recognition of gangliosides in membranes by BoNT/DC. These findings reveal a unique mechanism for cell membrane recognition and demonstrate that BoNT/DC can use a broad range of sialic acid-containing moieties as co-receptors.


Assuntos
Toxinas Botulínicas/química , Botulismo/metabolismo , Membrana Celular/química , Gangliosídeos/química , Animais , Sítios de Ligação , Toxinas Botulínicas/metabolismo , Membrana Celular/metabolismo , Cristalografia por Raios X , Feminino , Gangliosídeos/metabolismo , Humanos , Masculino , Camundongos , Ácido N-Acetilneuramínico/química , Ácido N-Acetilneuramínico/metabolismo
16.
FEBS Lett ; 591(22): 3781-3792, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29067689

RESUMO

Botulinum neurotoxins are highly toxic substances and are all encoded together with one of two alternative gene clusters, the HA or the OrfX gene cluster. Very little is known about the function and structure of the proteins encoded in the OrfX gene cluster, which in addition to the toxin contains five proteins (OrfX1, OrfX2, OrfX3, P47, and NTNH). We here present the structures of OrfX2 and P47, solved to 2.1 and 1.8 Å, respectively. We show that they belong to the TULIP protein superfamily, which are often involved in lipid binding. OrfX1 and OrfX2 were both found to bind phosphatidylinositol lipids.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Clostridium botulinum/metabolismo , Proteínas de Bactérias/metabolismo , Clonagem Molecular , Clostridium botulinum/química , Clostridium botulinum/genética , Cristalografia por Raios X , Modelos Moleculares , Família Multigênica , Fosfatidilinositóis/metabolismo , Ligação Proteica , Conformação Proteica
17.
Nat Commun ; 8(1): 53, 2017 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-28674381

RESUMO

Botulinum neurotoxin B is a Food and Drug Administration-approved therapeutic toxin. However, it has lower binding affinity toward the human version of its major receptor, synaptotagmin II (h-Syt II), compared to mouse Syt II, because of a residue difference. Increasing the binding affinity to h-Syt II may improve botulinum neurotoxin B's therapeutic efficacy and reduce adverse effects. Here we utilized the bacterial adenylate cyclase two-hybrid method and carried out a saturation mutagenesis screen in the Syt II-binding pocket of botulinum neurotoxin B. The screen identifies E1191 as a key residue: replacing it with M/C/V/Q enhances botulinum neurotoxin B binding to human synaptotagmin II. Adding S1199Y/W or W1178Q as a secondary mutation further increases binding affinity. Mutant botulinum neurotoxin B containing E1191M/S1199Y exhibits ~11-fold higher efficacy in blocking neurotransmission than wild-type botulinum neurotoxin B in neurons expressing human synaptotagmin II, demonstrating that enhancing receptor binding increases the overall efficacy at functional levels. The engineered botulinum neurotoxin B provides a platform to develop therapeutic toxins with improved efficacy.Humans are less sensitive to the therapeutic effects of botulinum neurotoxin B (BoNT/B) than the animal models it is tested on due to differences between the human and the mouse receptors. Here, the authors engineer BoNT/B to improve its affinity to human receptors and enhance its therapeutic efficacy.


Assuntos
Toxinas Botulínicas Tipo A/genética , Sinaptotagmina II/metabolismo , Inibidores da Liberação da Acetilcolina/farmacologia , Animais , Toxinas Botulínicas Tipo A/metabolismo , Toxinas Botulínicas Tipo A/farmacologia , Humanos , Mutagênese Sítio-Dirigida , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Técnicas de Patch-Clamp , Ligação Proteica/genética , Ratos , Proteínas Recombinantes , Técnicas do Sistema de Duplo-Híbrido
19.
J Am Chem Soc ; 139(1): 218-230, 2017 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-27958736

RESUMO

The highly poisonous botulinum neurotoxins, produced by the bacterium Clostridium botulinum, act on their hosts by a high-affinity association to two receptors on neuronal cell surfaces as the first step of invasion. The glycan motifs of gangliosides serve as initial coreceptors for these protein complexes, whereby a membrane protein receptor is bound. Herein we set out to characterize the carbohydrate minimal binding epitope of the botulinum neurotoxin serotype A. By means of ligand-based NMR spectroscopy, X-ray crystallography, computer simulations, and isothermal titration calorimetry, a screening of ganglioside analogues together with a detailed characterization of various carbohydrate ligand complexes with the toxin were accomplished. We show that the representation of the glycan epitope to the protein affects the details of binding. Notably, both branches of the oligosaccharide GD1a can associate to botulinum neurotoxin serotype A when expressed as individual trisaccharides. It is, however, the terminal branch of GD1a as well as this trisaccharide motif alone, corresponding to the sialyl-Thomsen-Friedenreich antigen, that represents the active ligand epitope, and these compounds bind to the neurotoxin with a high degree of predisposition but with low affinities. This finding does not correlate with the oligosaccharide moieties having a strong contribution to the total affinity, which was expected to be the case. We here propose that the glycan part of the ganglioside receptors mainly provides abundance and specificity, whereas the interaction with the membrane itself and protein receptor brings about the strong total binding of the toxin to the neuronal membrane.


Assuntos
Toxinas Botulínicas Tipo A/química , Polissacarídeos/química , Receptores de Superfície Celular/química , Toxinas Botulínicas Tipo A/metabolismo , Configuração de Carboidratos , Cristalografia por Raios X , Ligantes , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Polissacarídeos/metabolismo , Receptores de Superfície Celular/metabolismo
20.
Nature ; 508(7495): 215-21, 2014 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-24695224

RESUMO

Cancers have dysfunctional redox regulation resulting in reactive oxygen species production, damaging both DNA and free dNTPs. The MTH1 protein sanitizes oxidized dNTP pools to prevent incorporation of damaged bases during DNA replication. Although MTH1 is non-essential in normal cells, we show that cancer cells require MTH1 activity to avoid incorporation of oxidized dNTPs, resulting in DNA damage and cell death. We validate MTH1 as an anticancer target in vivo and describe small molecules TH287 and TH588 as first-in-class nudix hydrolase family inhibitors that potently and selectively engage and inhibit the MTH1 protein in cells. Protein co-crystal structures demonstrate that the inhibitors bind in the active site of MTH1. The inhibitors cause incorporation of oxidized dNTPs in cancer cells, leading to DNA damage, cytotoxicity and therapeutic responses in patient-derived mouse xenografts. This study exemplifies the non-oncogene addiction concept for anticancer treatment and validates MTH1 as being cancer phenotypic lethal.


Assuntos
Enzimas Reparadoras do DNA/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Nucleotídeos/metabolismo , Monoéster Fosfórico Hidrolases/antagonistas & inibidores , Animais , Domínio Catalítico , Morte Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cristalização , Dano ao DNA , Enzimas Reparadoras do DNA/química , Enzimas Reparadoras do DNA/metabolismo , Nucleotídeos de Desoxiguanina/metabolismo , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacocinética , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Feminino , Humanos , Masculino , Camundongos , Modelos Moleculares , Conformação Molecular , Terapia de Alvo Molecular , Neoplasias/patologia , Oxirredução/efeitos dos fármacos , Monoéster Fosfórico Hidrolases/química , Monoéster Fosfórico Hidrolases/metabolismo , Pirimidinas/química , Pirimidinas/farmacocinética , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico , Pirofosfatases/antagonistas & inibidores , Reprodutibilidade dos Testes , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...